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Abstract
We analyse a method to determine the short-time exponent θ related to the
critical initial slip in stochastic lattice models. In this method it suffices to
start with an uncorrelated state with a vanishing order parameter instead of
departing, as is usually done, from an initial state with a nonvanishing order
parameter. The exponent θ is calculated by the time correlation of the order
parameter. This method, deduced previously for up–down symmetry models,
is extended here to include models with other symmetries. We also consider
the extension to cover models with absorbing states.

PACS numbers: 05.70.Ln, 05.50.+q, 64.60.Ht

1. Introduction

The universal behaviour occurring in the first steps of a Monte Carlo simulation, the short-
time dynamics, has been amply investigated [1–7] in the last few years. According to
renormalization group arguments [1] the early-time behaviour of the order parameter (the
magnetization, for example, in the case of the Ising model) follows a power law with a critical
universal exponent θ . The numerical calculation of the exponent θ is performed by placing
the system at the critical point and departing from a configuration where the order parameter
m0 is very small.

It has been shown [8], for systems with up–down symmetry, that it is possible to determine
the exponent θ by starting with a configuration in which the order parameter is identically
zero. In this approach one does not measure the order parameter, which is always zero, but its
time correlation. If M(t) denotes the instantaneous order parameter, the quantity

Q(t) = 〈M(t)M(0)〉 (1)

follows a power law

Q(t) ∼ tθ (2)
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where the initial configuration is uncorrelated and such that

〈M(0)〉 = 0. (3)

The purpose of the current paper is to show that the procedure introduced in [8] for systems
with up–down symmetry can be extended to systems with other symmetries. We show here
that the results (1), (2) and (3) are general and can be applied to any lattice system described
by a Markovian process such that the transition probability is invariant under a given group
of symmetry operations. In particular, we apply the generalized scheme developed here to
systems with antiferromagnetic ordering and to the Baxter–Wu model in a triangular lattice
[9]. Employing this procedure it was recently calculated by numerical simulations [10],
with an excellent precision, the exponent θ associated with the Baxter–Wu model with triplet
interactions in a triangular lattice.

We consider also the short-time behaviour of intrinsic irreversible models with absorbing
states, such as the contact process. In this case, we demonstrate here that it suffices to depart
from a configuration with just one occupied site instead of starting from a configuration where
the density of particles is finite and small. Therefore, the short-time behaviour of the order
parameter is identical to the behaviour found by time-dependent simulations [11, 12] departing
from a unique initial seed. In both methods it is necessary to place the system in its critical
point.

2. Transition probability and symmetry

We consider the class of Markovian processes defined on a lattice whose probability
distribution P(σ, t) satisfies the equation

P(σ, t) =
∑
σ ′

T (σ, σ ′, t)P0(σ
′) (4)

where T (σ, σ ′, t) is the probability of reaching the configuration σ from configuration σ ′

in an interval of time t and P0(σ
′) is the initial probability distribution. We use the notation

σ = (σ1, σ2, . . . , σN) where N is the number of sites in the lattice and σi is the random variable
attached to the ith site that takes two values.

If the system evolves in time according to a master equation (continuous time Markovian
process)

d

dt
P (σ, t) =

∑
σ ′

{W(σ, σ ′)P (σ ′, t) − W(σ ′, σ )P (σ, t)} (5)

then the transition probability T (σ, σ ′, t) are the elements of the matrix T given by

T̂ = exp{tŴ } (6)

where Ŵ is the matrix whose elements are

Ŵ (σ ′, σ ) = W(σ ′, σ ) σ ′ �= σ (7)

and

Ŵ (σ, σ ) = −
∑

σ ′( �=σ )

W(σ ′, σ ). (8)

Let R be a symmetry operation that leaves the transition probability invariant, or,
equivalently, the matrix W invariant, that is

W(Rσ,Rσ ′) = W(σ, σ ′) (9)
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and by consequence

T (Rσ,Rσ ′, t) = T (σ, σ ′, t). (10)

For simplicity, we will consider here only models in which the symmetry operation R changes
the sign of the order parameter, that is,

M(Rσ) = −M(σ) (11)

and that M(σ) is linear in σ , that is,

M(σ) =
∑

i

µiσi . (12)

3. Time-dependent behaviour

We will focus on the time-dependent behaviour of the average

〈M(σ)〉t =
∑

σ

M(σ)P (σ, t) (13)

of the order parameter M(σ). Its time evolution is given by

〈M(σ)〉t =
∑

σ

∑
σ ′

M(σ)T (σ, σ ′, t)P0(σ
′) (14)

where the initial state P0(σ ) is uncorrelated with a nonzero magnetization. That is, the initial
magnetization

〈M(σ)〉0 =
∑

σ

M(σ)P0(σ ) = Nm0 (15)

is nonzero, where N is the number of sites of the lattice and m0 is a small quantity. As stated
by the short-time scaling theory, the order parameter follows, at the critical point, a power-law
behaviour

〈M(σ)〉t ∼ m0t
θ (16)

for small values of m0. According to this theory yet the initial state is prepared in such a
way that all sites are uncorrelated with a nonzero (and small) initial order parameter m0. In
order to set up such an initial state, one attributes to each site a magnetization mi = m0µi . Or
equivalentely, the spin of the ith site will be σi = µi with probability (1 + m0)/2 and σi = −µ

with probability (1 − m0)/2. The initial probability P0(σ ) can then be written as

P0(σ ) = �0

∏
i

{1 + m0µiσi} (17)

where

�0 = 1

2N
. (18)

Note that using equations (12) and (17) we can trivially find that

〈M(σ)〉0 =
∑

σ

M(σ)P0(σ ) = Nam0 (19)

where a is the constant

a = 1

N

∑
j

[µj ]2. (20)
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For small values of m0, the expansion of the initial probability P0(σ ) in powers of m0

gives, up to linear terms in m0, the following expression:

P0(σ ) = �0{1 + m0M(σ)}. (21)

Substituting this expression in equation (14) we get

〈M(σ)〉t =
∑

σ

∑
σ ′

M(σ)T (σ, σ ′, t)�0 +
∑

σ

∑
σ ′

M(σ)T (σ, σ ′, t)�0m0M(σ ′). (22)

Now, the first term on the right-hand side vanishes identically due to the following
reasoning. Since the symmetry operation R leaves the transition probability invariant but
changes the sign of the order parameter, we have∑

σ

∑
σ ′

M(Rσ)T (Rσ,Rσ ′, t)�0 = −
∑

σ

∑
σ ′

M(σ)T (σ, σ ′, t)�0. (23)

By a change of variable, Rσ → σ , the left-hand side of this equation equals the first term of
the right-hand side of equation (22) so that it vanishes. Therefore

Q(t) = lim
m0→0

〈M(σ)〉t
m0

=
∑

σ

∑
σ ′

M(σ)T (σ, σ ′, t)M(σ ′)�0 (24)

and, from equation (16) it follows that

Q(t) ∼ tθ . (25)

4. Applications

4.1. Models with up-down symmetry

We begin with a simple example, namely the ferromagnetic Ising model coupled to a stochastic
dynamics such as the Metropolis algorithm. The order parameter is defined by

M(σ) =
∑

i

σi (26)

where the summation is over all sites of the lattice. For the present case µi = +1 for all sites
of the lattice. Here the symmetry operation R, with the properties given by equations (10) and
(11), is the one in which the up-down symmetry is observed, that is, the operation that changes
the sign of each spin variable σi → −σi .

The short-time behaviour for the Ising model has been already studied through the present
formalism [8]. Besides, using this formalism, it has been possible to determine the short-time
behaviour for several irreversible models (i.e., lacking detailed balance) [8, 13, 14] with up-
down symmetry dynamics. These include for instance the majority vote model and similar
nonequilibrium models [8, 15].

4.2. Models with antiferromagnet ordering

In this case the system is divided into two sublattices A and B. The order parameter is defined
by

M(σ) =
∑
i∈A

σi −
∑
i∈B

σi. (27)

Therefore, for this case one has µi = +1 if i ∈ A and µi = −1 if i ∈ B. The symmetry
operation R is a translation such that a given site of one sublattice goes into a site of the
other sublattice. The short-time behaviour of a model with antiferromagnetic ordering was
numerically studied by the present approach in [16].
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4.3. Baxter–Wu model

We consider in this subsection the Baxter–Wu model with triplet interactions defined on
a triangular lattice [9, 10]. The lattice is composed of three sublattices which we denote
by A,B and C. The Baxter–Wu model does not have a global symmetry but semi-global
symmetries. The Hamiltonian of the model and a fortiori the transition probability is invariant
if we change the signs of two sublattices leaving the third invariant. It is convenient therefore
to define three symmetry operations, denoted by RA,RB and RC . The symmetry operation
RA changes the signs of the spins belonging to the sublattices B and C and leaves the signs
of the spins of sublattice A invariant. Similar definitions can be stated for RB and RC . Each
of these symmetry operations leaves the Baxter–Wu Hamiltonian invariant and a fortiori the
transition probability invariant.

We take as the order parameter the magnetization of one of the sublattices, say, sublattice
A, given by

MA(σ) =
∑
i∈A

σi. (28)

Comparing it with equation (12) we have that µi = 1 if i ∈ A and µi = 0 if i ∈ B or
i ∈ C. The symmetry operation RB (or RC) changes the sign of MA(σ) and leaves the
transition probability invariant. According to the formalism developed in the previous section
we conclude that

QA(t) = lim
m0→0

〈MA(σ)〉t
m0

=
∑

σ

∑
σ ′

MA(σ)T (σ, σ ′, t)MA(σ ′)�0 (29)

will behave as

QA(t) ∼ tθ . (30)

Equivalently, we may demonstrate that the analogous quantities QB(t) and QC(t) related
to the magnetizations MB(σ) and MC(σ) of sublattices B and RC , respectively, will behave
as tθ .

We may also use as the order parameter the total magnetization

M(σ) =
∑

i

σi (31)

which we write as the sum of the magnetizations of the three sublattices

M(σ) = MA(σ) + MB(σ) + MC(σ) (32)

which leads to

Q(t) =
∑

σ

∑
σ ′

M(σ)T (σ, σ ′, t)M(σ ′)�0. (33)

Substituting (32) into (33) we see that Q(t) is a sum of nine terms. The terms that involve
magnetizations of distinct sublattices will vanish. For instance, the term that involves MA and
MB will change sign by the use of the symetry operation RA. The nonvanishing terms are the
three terms that involve the same magnetization. One concludes that the quantity

Q(t) = QA(t) + QB(t) + QC(t) (34)

and therefore will behave as tθ . This procedure was used [10] to determine the exponent
θ . The numerical results give very precise values for the exponent when compared with the
results coming from simulations with nonzero initial magnetization.
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5. Contact model

Now we discuss the short-time behaviour for models with an absorbing state. These models do
not possess symmetry operations like the ones defined in the preceding sections. Due to this
fundamental difference we need to proceed by introducing another approach. The simplest
example of this type of model is the contact process [12]. Such model is defined in a lattice and
each microscopic state is identified with σ = (σ1, σ2, . . . , σN) where σi = 0 or 1 according
to whether the site i is empty or occupied by a particle. It evolves in time according to local
Markovian rules where particles are catalitically created and spontaneously anihilated.

The initial probability is such that all sites are uncorrelated and the average 〈σi〉 = ρ0,
that is,

P0(σ ) =
∏

i

{a(1 − σi) + bσi} (35)

where

a = 1 − ρ0 b = ρ0 (36)

is the total number of sites in the lattice.
Following the short-time scaling theory the order parameter 〈n(σ)〉 given by

〈n(σ)〉t =
∑
σ ′

∑
σ

n(σ )T (σ, σ ′, t)P0(σ
′) (37)

where

n(σ) =
∑

i

σi (38)

is the number of particle, behaves, at the critical point, as

〈n(σ)〉 ∼ ρ0t
θ . (39)

Consequently, the quantity

Q(t) = 1

N
lim
ρ0→0

〈n(σ)〉t
ρ0

(40)

has a similar behaviour in the early time regime

Q(t) ∼ tθ . (41)

For small values of ρ0 we have

P0(σ ) = aN�0(σ ) + aN−1b
∑

j

�j (σ ) (42)

where

�0(σ ) =
∏

i

(1 − σi) (43)

is the probability distribution such that the configuration (0, 0, 0, . . . , 0) (all sites empty) has
probability 1 and the other configurations have zero probability,

�j(σ) = σj

∏
i( �=j)

(1 − σi) (44)

is the probability distribution such that the configuration (0, 0, . . . , 1, . . . 0) (a particle placed
at the j th site and all other sites empty) has probability 1 and all other configurations have
zero probability.
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The average 〈n(σ)〉t can then be written as a sum of two parts

〈n(σ)〉t = aN
∑
σ ′

∑
σ

n(σ )T (σ, σ ′, t)�0(σ
′) + aN−1b

∑
j

∑
σ ′

∑
σ

n(σ )T (σ, σ ′, t)�j (σ
′).

(45)

Since the contact process has an abosrbing state devoided of particles, the first term vanishes
identically because �0(σ ) is the absorbing state. Therefore, using the translational invariance
we obtain

Q(t) =
∑
σ ′

∑
σ

n(σ )T (σ, σ ′, t)�j (σ
′). (46)

To calculate numerically Q(t), we start from a configuration with just one occupied site and
determine the number of occupied sites at time t.

According to the scaling relations established for the time-dependent behaviour of the
contact model in which the simulation is started with just one occupied site, the average
number of particles np(t) behaves as [11, 12]

np(t) ∼ tη. (47)

As Q(t) is identified with np(t) so the exponent θ is identified with the exponent η [17].
Let us now calculate the time correlation of a given site, say the site j . It is given by

A(t) =
∑
σ ′

∑
σ

σjT (σ, σ ′, t)σ ′
j P0(σ

′) (48)

and behaves, according to the short-time scaling theory, as

A(t) ∼ tλ. (49)

Now

σjP0(σ ) = bσj

∏
i( �=j)

{a(1 − σi) + bσi} (50)

where we have used the obvious relations σj (1 − σj ) = 0 and σjσj = σj . Therefore, in the
limit ρ0 → 0, we get

lim
ρ0→0

1

ρ0
σjP0(σ ) = �j(σ). (51)

Consequently,

B(t) = lim
ρ0→0

A(t)

ρ0
=

∑
σ ′

∑
σ

σjT (σ, σ ′, t)�j (σ
′) (52)

so that B(t) behaves as

B(t) ∼ tλ. (53)

Given that the initial particle seed is placed at a given site, the quantity B(t) is the probability
that this site be occupied at time t.

The exponent λ is related to dynamic exponent z by λ = d/z − θ [8]. Since the exponent
θ was identified as the exponent η, it follows that λ = d/z − η. Now, from the hyperscaling
relation for the contact process we have d/z − η = 2δ [12] where δ is the exponent associated
with the survival probability. Therefore it follows that λ = 2δ.

From the formalism developed here we conclude that the study of the short-time behaviour
of the contact process, discussed in [17], is as a matter of fact equivalent to the study of this
model by means of the time-dependent technique. Moreover, the critical exponents associated
with the short-time dynamics for the contact model, as well as the relation among them, are
equivalent to those found for the time-dependent simulations.
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6. Conclusion

We have shown that the short-time critical exponent θ of several models invariant under a
given group of symmetry can be calculated from the time correlation of the order parameter

Q(t) = 〈M(t)M(0)〉 (54)

where 〈f (t)g(0)〉 is a notation defined by

〈f (t)g(0)〉 =
∑

σ

∑
σ ′

f (σ)T (σ, σ ′, t)g(σ ′)�0. (55)

This result follows from a generalization of the procedure introduced in [8]. We have also
obtained similar formula for the contact process and shown that the short-time critical exponent
θ is equal to time-dependent critical exponent η. Finally, the results obtained here for the
continuous time Markovian processes can be straightforwardly extended to the probabilistic
cellular automata (discrete time Markovian process).
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